熱線:021-56056830,66110819
手機(jī):13564362870
熱線:021-56056830,66110819
手機(jī):13564362870
結(jié)論
在沿海棲息地環(huán)境條件波動(dòng),在所有少數(shù)現(xiàn)存調(diào)查中,與恒定條件相比,在存在波動(dòng)的情況下,目標(biāo)物種受到不同的影響。 無(wú)視我們研究中的自然波動(dòng),加上我們通常的實(shí)驗(yàn)方法的其他局限性(圖 1),會(huì)大大削弱我們見(jiàn)解的相關(guān)性。 毫無(wú)疑問(wèn),我們收集了大量關(guān)于海洋急性酸化影響的信息。 為了將這些整理成一幅連貫而真實(shí)的圖片,我們需要:(1) 將這些知識(shí)輸入到描述性模型中,以及 (2) 進(jìn)行更全面的多因素或多變量調(diào)查,包括頻率和幅度自然尺度的驅(qū)動(dòng)波動(dòng)。 在可能的情況下,此類調(diào)查應(yīng)足夠長(zhǎng),以便適應(yīng)或適應(yīng)目標(biāo)物種、它們相關(guān)的微生物組以及它們與社區(qū)中其他物種的相互作用。 一種有希望的方法是對(duì)中宇宙系統(tǒng)中的海洋酸化(或許多其他生態(tài)問(wèn)題)進(jìn)行調(diào)查,正如斯圖爾特等人所請(qǐng)求的那樣。 (2013) 和加圖索等人。 (2014)。 例如,一年多來(lái),我們?cè)谝幌盗写笮椭惺澜纾?Kiel Benthocosms':圖 6)中進(jìn)行了一項(xiàng)關(guān)于近自然條件下全球變化效應(yīng)的實(shí)驗(yàn)。 該社區(qū)是一個(gè)膀胱殘骸組合,包括大型藻類、它們的微型和大型表皮生物、中食草動(dòng)物、海星、貽貝、魚類,它們以自然比例移植到底棲動(dòng)物中。 驅(qū)動(dòng)因素(溫度、酸化、營(yíng)養(yǎng)、缺氧)作為增量處理應(yīng)用,即作為環(huán)境條件的附加物。 delta 處理的值對(duì)應(yīng)于直到 2100 年均值變化的預(yù)測(cè)——只要這種預(yù)測(cè)存在于區(qū)域尺度。 由底棲動(dòng)物群落的新陳代謝和基爾峽灣(德國(guó))水的生物學(xué)和水文學(xué)驅(qū)動(dòng)的波動(dòng),以貫穿模式喂養(yǎng)底棲動(dòng)物,是自由承認(rèn)的。 實(shí)驗(yàn)持續(xù)時(shí)間涵蓋所有季節(jié)。 反應(yīng)是在物種和群落層面進(jìn)行記錄的,從而整合了不同個(gè)體發(fā)育階段、不同物種及其相互轉(zhuǎn)移的水平的反應(yīng)。 通過(guò)這種方法,我們希望提高我們了解全球變化如何影響自然環(huán)境中的物種、由這些物種組成的群落以及它們提供的生態(tài)系統(tǒng)服務(wù)的能力。 盡管這些底棲動(dòng)物在概念上相當(dāng)先進(jìn),但它們?nèi)匀挥衅渚窒扌浴?因此,某些生物,例如翼足類、魚類和海帶,由于尚不清楚的原因,只能保持良好的生理狀態(tài)3-6 個(gè)月。 必須控制或考慮“壁效應(yīng)”,即微生物群和絲狀藻類的生長(zhǎng)增強(qiáng)。 微觀世界的實(shí)驗(yàn)室實(shí)驗(yàn)對(duì)于闡明單一和孤立的影響始終很重要,而現(xiàn)場(chǎng)實(shí)驗(yàn)可用于驗(yàn)證底棲動(dòng)物的結(jié)果。 所有三種方法的互補(bǔ)使用,強(qiáng)調(diào)創(chuàng)新的中觀系統(tǒng),允許多因素處理、多物種響應(yīng)和自然波動(dòng)的結(jié)合,對(duì)于實(shí)現(xiàn)對(duì)沿海棲息地未來(lái) OA 影響的現(xiàn)實(shí)認(rèn)識(shí)是必要的。
圖 6. Kiel Benthocosms:在兩種溫度狀態(tài)(環(huán)境為 D08,溫暖或“未來(lái)”為 Dt58C)和兩種酸化狀態(tài)(低 pCO2 或“環(huán)境”在 400 matm(淺灰色下曲線)下的波動(dòng) Delta pH 處理;底棲動(dòng)物帶帽頂空處的高 pCO2 或“未來(lái)”為 1100 matm(深灰色上部曲線))。 快速振蕩(由垂直黑線表示的高 pCO2 狀態(tài)的振幅)是生物信號(hào),可歸因于底棲動(dòng)物群落光合作用和呼吸的晝夜節(jié)律變化。 黑色虛線表示基爾峽灣 pH 值的季節(jié)性下降。 雙頭箭頭表示頂空 pCO2 處理對(duì)底棲動(dòng)物 pH 值的影響。 盡管在頂部空間空氣的 pCO2 增強(qiáng)中應(yīng)用了相同的處理強(qiáng)度,但這意味著較低溫度下的 pH 值差異較小。 pH 值的生物源晝夜波動(dòng)在較冷的區(qū)域也具有較小的幅度。
如果沒(méi)有將我們的實(shí)驗(yàn)方法升級(jí)到更復(fù)雜和更“真實(shí)”的水平,我們就會(huì)陷入一個(gè)德國(guó)笑話中描述的情況:一個(gè)男人在晚上在路燈下尋找丟失的鑰匙。 一位樂(lè)于助人的路人很快加入了他的努力。 經(jīng)過(guò) 30 分鐘的搜索未果,幫手問(wèn)這位不幸的人是否真的確定他在這個(gè)地方丟失了他的鑰匙。 那人回答說(shuō):“不,不,我在街角丟了它們,但那里沒(méi)有路燈,在這里我們可以看到的地方搜索要方便得多”。
致謝 我們非常感謝 Christopher Cornwall(澳大利亞珀斯大學(xué))對(duì)本文早期版本的寶貴意見(jiàn)。 兩位匿名審稿人和編輯史蒂夫霍金斯的評(píng)論和建議極大地改進(jìn)了本文的實(shí)質(zhì)和風(fēng)格。 我們非常感謝他們的努力。
References
Anthony, K. R. N., Diaz-Pulido, G., Verlinden, N., Tilbrook, B., and
Andersson, A. J. (2013). Benthic buffers and boosters of ocean acidification
on coral reefs. Biogeosciences Discussions 10, 1831–1865.
doi:10.5194/BGD-10-1831-2013
Appelhans, Y. S., Thomsen, J., Pansch, C., Melzner, F., and Wahl, M.
(2012). Sour times: seawater acidification effects on growth, feeding
behaviour and acid-base status of Asterias rubens and Carcinus maenas.
Marine Ecology Progress Series 459, 85–98. doi:10.3354/MEPS09697
Appelhans, J. S., Thomsen, J., Opitz, S., Pansch, C., Melzner, F., and Wahl,
M. (2014). Juvenile sea stars exposed to acidification decrease feeding
and growth with no acclimation potential. Marine Ecology Progress
Series 509, 227–239. doi:10.3354/MEPS10884
Bates, N. R., and Leone, S. (2001). Biogeochemical and physical factors
influencing seawater fCO2 and air–sea CO2 exchange on the Bermuda
coral reef. Limnology and Oceanography 46, 833–846. doi:10.4319/LO.
2001.46.4.0833
Buapet, P., Gullstro¨m, M., and Bjo¨rk, M. (2013). Photosynthetic activity of
seagrasses and macroalgae in temperate shallow waters can alter
seawater pH and total inorganic carbon content at the scale of a coastal
embayment. Marine and Freshwater Research 64, 1040–1048.
doi:10.1071/MF12124
Byrne, M., and Przeslawski, R. (2013). Multistressor impacts of warming
and acidification of the ocean on marine invertebrates’ life histories.
Integrative and Comparative Biology 53, 582–596. doi:10.1093/ICB/
ICT049
Comeau, S., Edmunds, P. J., Spindel, N. B., and Carpenter, R.C. (2014). Diel
pCO2 oscillations modulate the response of the coral Acropora hyacinthus
to ocean acidification. Marine Ecology Progress Series 501,
99–111. doi:10.3354/MEPS10690
Connell, S. D., and Russell, B. D. (2010). The direct effects of increasing
CO2 and temperature on non-calcifying organisms: increasing the
potential for phase shifts in kelp forests. Proceedings of the Royal
Society of London – B. Biological Sciences 277, 1409–1415.
doi:10.1098/RSPB.2009.2069
Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., and Russell, B.
D. (2013). The other ocean acidification problem: CO2 as a resource
among competitors for ecosystem dominance. Philosophical Transactions
of the Royal Society of London – B. Biological Sciences 368,
20120442. doi:10.1098/RSTB.2012.0442
Cornwall, C. E., Hepburn, C. D., Pilditch, C. A., and Hurd, C. L. (2013).
Concentration boundary layers around complex assemblages of macroalgae:
implications for the effects of ocean acidification on understory coralline algae. Limnology and Oceanography 58, 121–130.
doi:10.4319/LO.2013.58.1.0121
Cornwall, C. E., Boyd, P. W., McGraw, C. M., Hepburn, C. D., Pilditch, C.
A., Morris, J. N., Smith, A. M., and Hurd, C. L. (2014). Diffusion
boundary layers ameliorate the negative effects of ocean acidification on
the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE
9, e97235. doi:10.1371/JOURNAL.PONE.0097235
Daniel, M. J., and Boyden, C. R. (1975). Diurnal variations in physicochemical
conditions within intertidal rockpools. Field Studies 4, 161–176.
Delille, B., Delille, D., Fiala, M., Prevost, C., and Frankignoulle, M. (2000).
Seasonal changes of pCO2 over a subantarctic Macrocystis kelp bed.
Polar Biology 23, 706–716. doi:10.1007/S003000000142
Delille, B., Borges, A. V., and Delille, D. (2009). Influence of giant kelp beds
(Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the
Sub-Antarctic coastal area. Estuarine, Coastal and Shelf Science 81,
114–122. doi:10.1016/J.ECSS.2008.10.004
Drupp, P., De Carlo, E., Mackenzie, F., Bienfang, P., and Sabine, C. (2011).
Nutrient inputs, phytoplankton response, and CO2 variations in a
semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii. Aquatic
Geochemistry 17, 473–498. doi:10.1007/S10498-010-9115-Y
Drupp, P. S., De Carlo, E. H., Mackenzie, F. T., Sabine, C. L., Feely, R. A.,
and Shamberger, K. E. (2013). Comparison ofCO2 dynamics and air–sea
gas exchange in differing tropical reef environments. Aquatic Geochemistry
19, 371–397. doi:10.1007/S10498-013-9214-7
Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A.,
Ramajo, L., Carstensen, J., Trotter, J. A., and McCulloch, M. (2013).
Is ocean acidification an open-ocean syndrome? Understanding anthropogenic
impacts on seawater pH. Estuaries and Coasts 36, 221–236.
doi:10.1007/S12237-013-9594-3
Duarte, C., Navarro, J., Acuna, K., Torres, R., Manriquez, P., Lardies, M.,
Vargas, C., Lagos, N., and Aguilera, V. (2014). Combined effects of
temperature and ocean acidification on the juvenile individuals of the
mussel Mytilus chilensis. Journal of Sea Research 85, 308–314.
doi:10.1016/J.SEARES.2013.06.002
Dufault, A. M., Cumbo, V. R., Fan, T.-Y., and Edmunds, P. J. (2012). Effects
of diurnally oscillating pCO2 on the calcification and survival of
coral recruits. Proceedings. Biological Sciences 279, 2951–2958.
doi:10.1098/RSPB.2011.2545
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.
(2008). Evidence for upwelling of corrosive ‘a(chǎn)cidified’ water onto the
continental shelf. Science 320, 1490–1492. doi:10.1126/SCIENCE.
1155676
Forsgren, E., Dupont, S., Jutfelt, F., and Amundsen, T. (2013). ElevatedCO2
affects embryonic development and larval phototaxis in a temperate
marine fish. Ecology and Evolution 3, 3637–3646. doi:10.1002/
ECE3.709
Frankignoulle, M. (1988). Field measurements of air–sea CO2 exchange.
Limnology and Oceanography 33, 313–322. doi:10.4319/LO.1988.
33.3.0313
Frankignoulle, M., and Bouquegneau, J. M. (1990). Daily and yearly
variations of total inorganic carbon in a productive coastal area. Estuarine,
Coastal and Shelf Science 30, 79–89. doi:10.1016/0272-7714(90)
90078-6
Frankignoulle, M., and Diste`che, A. (1984). CO2 chemistry in the water
column above a Posidonia seagrass bed and related air–sea exchanges.
Oceanologica Acta 7, 209–219.
Frieder, C. A., Nam, S. H., Martz, T. R., and Levin, L. A. (2012). High
temporal and spatial variability of dissolved oxygen and pH in
a nearshore California kelp forest. Biogeosciences 9, 3917–3930.
doi:10.5194/BG-9-3917-2012
Frieder, C. A., Gonzalez, J. P., Bockmon, E. E., Navarro, M. O., and Levin,
L. A. (2014). Can variable pH and low oxygen moderate ocean
acidification outcomes for mussel larvae? Global Change Biology 20,
754–764. doi:10.1111/GCB.12485
Gattuso, J.-P., Kirkwood, W., Barry, J. P., Cox, E., Gazeau, F., Hansson, L.,
Hendriks, I., Kline, D. I., Mahacek, P., Martin, S., McElhany, P., Peltzer,
E. T., Reeve, J., Roberts, D., Saderne, V., Tait, K., Widdicombe, S., and
Brewer, P. G. (2014). Free-ocean CO2 enrichment (FOCE) systems:
present status and future developments Biogeosciences 11, 4057–4075.
doi:10.5194/BG-11-4057-2014
Gray, S. E. C., DeGrandpre, M. D., Langdon, C., and Corredor, J. E. (2012).
Short-term and seasonal pH, pCO2 and saturation state variability in a
coral-reef ecosystem. Global Biogeochemical Cycles 26, GB3012.
doi:10.1029/2011GB004114
Griffin,N., andDurako,M. (2012). The effect of pulsed versus gradual salinity
reduction on the physiology and survival ofHalophila johnsonii Eiseman.
Marine Biology 159, 1439–1447. doi:10.1007/S00227-012-1923-8
Hadfield, M. G., and Strathmann, M. F. (1996). Variability, flexibility and
plasticity in life histories of marine invertebrates. Oceanologica Acta 19,
323–334.
Helbling, E. W., Carrillo, P., Medina-Sanchez, J. M., Duran, C., Herrera, G.,
Villar-Argaiz, M., and Villafane, V. E. (2013). Interactive effects of
vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic
responses of phytoplankton from high mountain lakes in southern
Europe. Biogeosciences 10, 1037–1050. doi:10.5194/BG-10-1037-2013
Hendriks, I. E., Olsen, Y. S., Ramajo, L., Basso, L., Steckbauer, A., Moore,
T. S., Howard, J., and Duarte, C. M. (2014). Photosynthetic activity
buffers ocean acidification in seagrass meadows. Biogeosciences 11,
333–346. doi:10.5194/BG-11-333-2014
Hiebenthal, C., Philipp, E., Eisenhauer, A., and Wahl, M. (2013). Effects of
seawater pCO2 and temperature on shell growth, shell stability, condition
and cellular stress of western Baltic Sea Mytilus edulis (L.) and
Arctica islandica (L.). Marine Biology 160, 2073–2087. doi:10.1007/
S00227-012-2080-9
Hofmann,G. E., Smith, J.E., Johnson,K. S., Send,U.,Levin,L.A.,Micheli, F.,
Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G.,
Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A.,
Yu, P. C., and Martz, T. R. (2011). High-frequency dynamics of ocean
pH: a multi-ecosystem comparison. PLoS ONE 6, e28983. doi:10.1371/
JOURNAL.PONE.0028983
Hurd, C. L. (2000). Water motion, marine macroalgal physiology, and
production. Journal of Phycology 36, 453–472. doi:10.1046/J.1529-
8817.2000.99139.X
Hurd, C. L., and Pilditch, C. A. (2011). Flow-induced morphological
variations affect diffusion boundary-layer thickness of Macrocystis
pyrifera (Heterokontophyta, Laminariales). Journal of Phycology 47,
341–351. doi:10.1111/J.1529-8817.2011.00958.X
Hurd, C. L., Hepburn, C. D., Currie, K. I., Raven, J. A., and Hunter, K. A.
(2009). Testing the effects of ocean acidification on algal metabolism:
considerations for experimental designs. Journal of Phycology 45,
1236–1251. doi:10.1111/J.1529-8817.2009.00768.X
Johnson, V. R., Brownlee, C., Rickaby, R. E. M., Graziano, M., Milazzo, M.,
and Hall-Spencer, J. M. (2013). Responses of marine benthic microalgae
to elevated CO2. Marine Biology 160, 1813–1824. doi:10.1007/S00227-
011-1840-2
Kim, T. W., Barry, J. P., and Micheli, F. (2013). The effects of intermittent
exposure to low-pH and low-oxygen conditions on survival and growth
of juvenile red abalone. Biogeosciences 10, 7255–7262. doi:10.5194/
BG-10-7255-2013
Koch, M., Bowes, G., Ross, C., and Zhang, X.-H. (2013). Climate change
and ocean acidification effects on seagrasses and marine macroalgae.
Global Change Biology 19, 103–132. doi:10.1111/J.1365-2486.2012.
02791.X
Kulin′ski, K., Schneider, B., Hammer, K., Machulik, U., and Schulz-Bull, D.
(2014). The influence of dissolved organic matter on the acid–base
system of the Baltic Sea. Journal of Marine Systems 132, 106–115.
doi:10.1016/J.JMARSYS.2014.01.011
Kurihara, H., Yin, R., Nishihara, G., Soyano, K., and Ishimatsu, A. (2013).
Effect of ocean acidification on growth, gonad development and
physiology of the sea urchin Hemicentrotus pulcherrimus. Aquatic
Biology 18, 281–292. doi:10.3354/AB00510
Lohbeck, K., Riebesell, U., Collins, S., and Reusch, T. (2013). Functional
genetic divergence in high CO2 adapted Emiliania huxleyi populations.
Evolution 67, 1892–1900. doi:10.1111/J.1558-5646.2012.01812.X
Low-De′carie, E., Fussmann, G., and Bell, G. (2011). The effect of elevated
CO2 on growth and competition in experimental phytoplankton communities.
Global Change Biology 17, 2525–2535. doi:10.1111/J.1365-
2486.2011.02402.X
Manzello, D. P. (2010). Ocean acidification hot spots: spatiotemporal
dynamics of the seawater CO2 system of eastern Pacific coral reefs.
Limnology and Oceanography 55, 239–248. doi:10.4319/LO.2010.55.1.
0239
Massaro, R. S., De Carlo, E., Drupp, P., Mackenzie, F., Jones, S.,
Shamberger, K., Sabine, C., and Feely, R. (2012). Multiple factors
driving variability of CO2 exchange between the ocean and atmosphere
in a tropical coral reef environment. Aquatic Geochemistry 18, 357–386.
doi:10.1007/S10498-012-9170-7
McCoy, S. (2013). Morphology of the crustose coralline alga Pseudolithophyllum
muricatum (Corallinales, Rhodophyta) responds to 30 years of
ocean acidification in the northeast Pacific. Journal of Phycology 49,
830–837.
Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A.,
Bange, H. W., Hansen, H. P., and Kortzinger, A. (2013). Future ocean
acidification will be amplified by hypoxia in coastal habitats. Marine
Biology 160, 1875–1888. doi:10.1007/S00227-012-1954-1
Middelboe, A. L., and Hansen, P. J. (2007). High pH in shallow-water
macroalgal habitats. Marine Ecology Progress Series 338, 107–117.
doi:10.3354/MEPS338107
Miller, G., Watson, S., Donelson, J., McCormick, M., and Munday, P.
(2012). Parental environment mediates impacts of increased carbon
dioxide on a coral reef fish. Nature Climate Change 2, 858–861.
doi:10.1038/NCLIMATE1599
Miller-Neilan, R., and Rose, K. (2014). Simulating the effects of fluctuating
dissolved oxygen on growth, reproduction, and survival of fish and
shrimp. Journal of Theoretical Biology 343, 54–68. doi:10.1016/J.JTBI.
2013.11.004
Morris, S., and Taylor, A. C. (1983). Diurnal and seasonal variation in
physico-chemical conditions within intertidal rock pools. Estuarine,
Coastal and Shelf Science 17, 339–355. doi:10.1016/0272-7714(83)
90026-4
Nguyen, H. D., and Byrne, M. (2014). Early benthic juvenile Parvulastra
exigua (Asteroidea) are tolerant to extreme acidification and warming in
its intertidal habitat. Journal of Experimental Marine Biology and
Ecology 453, 36–42. doi:10.1016/J.JEMBE.2013.12.007
Ohde, S., and van Woesik, R. (1999). Carbon dioxide flux and metabolic
processes of a coral reef, Okinawa. Bulletin of Marine Science 65,
559–576.
Pansch, C., Nasrolahi, A., Appelhans, J. S., and Wahl, M. (2012). Impacts
of ocean warming and acidification on the larval development of
the barnacle Amphibalanus improvises. Journal of Experimental
Marine Biology and Ecology 420–421, 48–55. doi:10.1016/J.JEMBE.
2012.03.023
Pansch, C., Schaub, I., Havenhand, J., and Wahl, M. (2014). Habitat traits
and food availability determine the response of marine invertebrates to
ocean acidification. Global Change Biology 20, 765–777. doi:10.1111/
GCB.12478
Price, N. N., Martz, T. R., Brainard, R. E., and Smith, J. E. (2012). Diel
variability in seawater pH relates to calcification and benthic community
structure on coral reefs. PLoS ONE 7, e43843. doi:10.1371/JOURNAL.
PONE.0043843
Putnam, H. M., and Edmunds, P. J. (2011). The physiological response of
reef corals to diel fluctuations in seawater temperature. Journal of
Experimental Marine Biology and Ecology 396, 216–223. doi:10.1016/
J.JEMBE.2010.10.026
Saderne, V., and Wahl, M. (2013). Differential responses of calcifying and
non-calcifying epibionts of a brown macroalga to present-day and future
upwelling pCO2. PLoS ONE 8, e70455. doi:10.1371/JOURNAL.PONE.
0070455
Saderne, V., Fietzek, P., and Herman, P. M. J. (2013). Extreme variations of
pCO2 and pH in a macrophyte meadow of the baltic sea in summer:
evidence of the effect of photosynthesis and local upwelling. PLoS ONE
8, e62689. doi:10.1371/JOURNAL.PONE.0062689
Schulz, K. G., and Riebesell, U. (2013). Diurnal changes in seawater
carbonate chemistry speciation at increasing atmospheric carbon dioxide.
Marine Biology 160, 1889–1899. doi:10.1007/S00227-012-1965-Y
Semesi, I. S., Beer, S., and Bjo¨rk, M. (2009). Seagrass photosynthesis
controls rates of calcification and photosynthesis of calcareous macroalgae
in a tropical seagrass meadow. Marine Ecology Progress Series
382, 41–48. doi:10.3354/MEPS07973
Shashar, N., Kinane, S., Jokiel, P. L., and Patterson, M. R. (1996). Hydromechanical
boundary layers over a coral reef. Journal of Experimental
Marine Biology and Ecology 199, 17–28. doi:10.1016/0022-0981(95)
00156-5
Shaw, E. C., McNeil, B. I., and Tilbrook, B. (2012). Impacts of ocean
acidification in naturally variable coral reef flat ecosystems. Journal of
Geophysical Research: Oceans 117, C03038. doi:10.1029/2011JC007655
Soares, H. C., Marcolino Gherardi, D. F., Pezzi, L. P., Kayano, M. T., and
Paes, E. T. (2014). Patterns of interannual climate variability in large
marine ecosystems. Journal of Marine Systems 134, 57–68. doi:10.1016/
J.JMARSYS.2014.03.004
Spilling, K., Titelman, J., Greve, T. M., and Ku¨ hl, M. (2010). Microsensor
measurements of the external and internal microenvironment of Fucus
vesiculosus (Phaeophyceae). Journal of Phycology 46, 1350–1355.
doi:10.1111/J.1529-8817.2010.00894.X
Stewart, R. I. A., Dossena, M., Bohan, D. A., Jeppesen, E., Kordas, R. L.,
Ledger,M. E.,Meerhoff,M.,Moss,B.,Mulder,C., Shurin, J.B., Suttle,B.,
Thompson, R., Trimmer, M., and Woodward, G. (2013). Mesocosm
experiments as a tool for ecological climate-change research. Advances
in Ecological Research 48, 71–181. doi:10.1016/B978-0-12-417199-2.
00002-1
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,M., Allen, S. K., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds) (2013). Summary
for Policymakers. In ‘Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change’. pp. 3–29. (Cambridge
University Press: Cambridge, UK, and New York.)
Thomsen, J., Gutowska, M. A., Saphoerster, J., Heinemann, A., Truebenbach,
K., Fietzke, J., Hiebenthal, C., Eisenhauer, A., Koertzinger, A.,
Wahl, M., and Melzner, F. (2010). Calcifying invertebrates succeed in a
naturally CO2-rich coastal habitat but are threatened by high levels of
future acidification. Biogeosciences 7, 3879–3891. doi:10.5194/BG-7-
3879-2010
Truchot, J. P., and Duhamel-Jouve, A. (1980). Oxygen and carbon dioxide in
the marine intertidal environment: diurnal and tidal changes in rockpools.
Respiration Physiology 39, 241–254. doi:10.1016/0034-5687(80)
90056-0
Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G.,
McCann, K. S., Savage, V., Tunney, T. D., and O’Connor, M. I. (2014).
Increased temperature variation poses a greater risk to species than
climate warming. Proceedings of the Royal Society B: Biological
Sciences 281. doi:10.1098/RSPB.2013.2612
Wahl, M., Jormalainen, V., Eriksson, B. K., Coyer, J. A., Molis, M.,
Schubert, H., Dethier, M., Karez, R., Kruse, I., Lenz, M., Pearson, G.,
Rohde, S., Wikstrom, S. A., and Olsen, J. L. (2011). Stress ecology
in Fucus: abiotic, biotic and genetic interactions. In ‘Advances in
Marine Biology’. (Ed. M. Lesser.) Vol 59, Book 59. (Academic Press:
Oxford, UK.)
Waldbusser, G. G., and Salisbury, J. E. (2014). Ocean acidification in the
coastal zone froman organism’s perspective:multiple systemparameters,
frequency domains, and habitats. Annual Review of Marine Science 6,
221–247. doi:10.1146/ANNUREV-MARINE-121211-172238
Wootton, J. T., Pfister, C. A., and Forester, J. D. (2008). Dynamic patterns
and ecological impacts of declining ocean pH in a high-resolution multiyear
dataset. Proceedings of the National Academy of Sciences of the
United States of America 105, 18848–18853. doi:10.1073/PNAS.
0810079105
Yates, K. K., Dufore, C., Smiley, N., Jackson, C., and Halley, R. B. (2007).
Diurnal variation of oxygen and carbonate system parameters in Tampa
Bay and Florida Bay. Marine Chemistry 104, 110–124. doi:10.1016/
J.MARCHEM.2006.12.008
在沿海系統(tǒng)評(píng)估海洋酸化的影響所取得的成就——摘要、介紹
在沿海系統(tǒng)評(píng)估海洋酸化的影響所取得的成就——材料和方法